B41F-0504
Influence of Low Molecular Weight Fractions of Humic Substances on Their Reducing Capacities and Distribution of Redox Functional Groups.
Thursday, 17 December 2015
Poster Hall (Moscone South)
Zhen Yang and Jie Jiang, Beijing Forestry University, Beijing, China
Abstract:
Humic substances (HS) are redox-active organic compounds and their reducing capacities depend on molecule structure and distribution of redox functional groups (RFG). During dialysis experiments, initial HS were separated into low molecular weight fractions (LMWF, molecular weight <3,500 Da or <14,000 Da) and retentate. LMWF accounts for only 2% in TOC contents of HS molecules, while their reducing capacities are up to 33 times greater than those of initial HA. However, great amount of reducing capacities of LMWF does not cause decreasing reducing capacities of retentate relative to those of initial HA. Total reducing capacities of whole dialysis device were calculated for initial HA, retentate and LMWF in native and reduced state, and result suggests that releasing of LMWF leads to production and explosion of RFG. LWMF have great fluorescence intensities for protein-like fluorophores and humic acids-like fluorophores (quinone-like functional groups), where quinonoid π-π* transition is responsible for the great reducing capacities of LMWF. The 3,500 Da molecules (0.25 nm diameter) of HS are capable of stimulating transformation of redox-active metals or potential pollutants trapped in soil micropores (< 2 nm diameter). A development of relationship between reducing capacity and Ex / Em position provides a possibility to predicate relative reducing capacities of HS in treated raw water sample.