H33C-1610
Stream discharge events increase the reaction efficiency of the hyporheic zone of an in-stream gravel bar

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Nico Trauth1, Jan H Fleckenstein1 and Christian Schmidt2, (1)Helmholtz Centre for Environmental Research UFZ Leipzig, Leipzig, Germany, (2)Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
Abstract:
Streambed structures such as dunes, pool-riffles or bars enhance the exchange of stream water and solutes with the subsurface, the hyporheic zone. Prior studies have evaluated the factors which control hyporheic exchange and biogeochemical processes for steady state hydrological conditions using numerical models. However, the impact of natural discharge variability on water and solute exchange, creating hydraulically specific conditions for the reactions in the shallow streambed, has not been studied so far.

In our study, we set up a transient flow and reactive transport model to elucidate the impact of single stream discharge events on water exchange, solute transport and reactions within the hyporheic zone of an in-stream gravel bar. The discharge events were varied by their duration and the maximum stream discharge. Temporally variable hydraulic heads were assigned as hydraulic head boundary conditions at the top of the reactive groundwater model MIN3P. A steady ambient groundwater flow field was introduced by lateral upstream and downstream hydraulic head boundaries, generating in combination with the stream water level, losing, neutral, or gaining stream conditions. Stream water borne dissolved oxygen, dissolved organic carbon and nitrate can infiltrate into the modelling domain across the top boundary and can react with each other by aerobic respiration and denitrification.

Our results show that water and solute exchange through the hyporheic zone (only stream water that infiltrates into the subsurface and exfiltrates back to the stream) is highly dependent on the interplay between event characteristics and the ambient groundwater level. In scenarios where the stream discharge shifts the hydraulic system to strong and long-lasting losing conditions, hyporheic flow paths are longer and the extent of the hyporheic zone are deeper than under base flow conditions and small events where gaining conditions prevail. Consequently, stream discharge events may temporally lead to increased reactivity efficiency (the proportion of solute consumption of solute influx) of the hyporheic zone by approximately 2.0 and 3.6 times for aerobic respiration and denitrification, respectively.