OS23B-1997
Gas Hydrate Deposits in the Cauvery-Mannar Offshore Basin, India

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Pawan Dewangan, CSIR - National Institute of Oceanography, Dona Paula, Goa,, India and Shipboard participants of cruise SR-006 onboard R/V Samudra Ratnakar
Abstract:
The analysis of geophysical and coring data from Mahanadi and Krishna-Godavari offshore basins, eastern continental margin of India, has established the presence of gas hydrate deposits; however, other promising petroliferous basins are relatively unexplored for gas hydrates. A collaborative program between GSI/MoM and CSIR-NIO was formulated to explore the Cauvery-Mannar offshore basin for gas hydrate deposits (Fig. 1a). High quality multi-channel reflection seismics (MCS) data were acquired with 3,000 cu. in airgun source array and 3 km long hydrophone streamer (240 channels) onboard R/V Samudra Ratnakar for gas hydrate studies. Other geophysical data such as gravity, magnetic and multibeam data were also acquired along with seismic data.

After routine processing of seismic data, the bottom simulating reflectors (BSRs) are observed in the central and north-eastern part of the survey area. The BSRs are identified based on its characteristic features such as mimicking the seafloor, opposite polarity with respect to the seafloor and crosscutting the existing geological layers (Fig. 1b). At several locations, seismic signatures associated with free gas such as drop in interval velocity, pull-down structures, amplitude variation with offset (AVO) and attenuation are observed below the BSRs which confirm the presence of free gas in the study area. Acoustic chimneys are observed at some locations indicating vertical migration of the free gas. The observed seismic signatures established the presence of gas hydrates/free gas deposits in Cauvery-Mannar basin. Interestingly, BSRs appear to be distributed along the flanks of submarine canyon indicating the influence of geomorphology on the formation and distribution of gas hydrates.