PA43C-2195
Advances in Volcanic Ash Cloud Photogrammetry from Space

Thursday, 17 December 2015
Poster Hall (Moscone South)
Klemen Zaksek1, Jost von der Lieth1, Luca Merucci2, Matthias KG Hort1 and Alexander Gerst3, (1)University of Hamburg, Hamburg, Germany, (2)INGV National Institute of Geophysics and Volcanology, Rome, Italy, (3)European Astronaut Centre, Cologne, Germany
Abstract:
The quality of ash dispersion prediction is limited by the lack of high quality information on eruption source parameters. One of the most important one is the ash cloud top height (ACTH). Because of well-known uncertainties of currently operational methods, photogrammetric methods can be used to improve height estimates. Some satellites have on board multiangular instruments that can be used for photogrammetrical observations. Volcanic ash clouds, however, can move with velocities over several m/s making these instruments inappropriate for accurate ACTH estimation. Thus we propose here two novel methods tested on different case studies (Etna 2013/11/23, Zhupanovsky 2014/09/10).

The first method is based on NASA program Crew Earth observations from International Space Station (ISS). ISS has a lower orbit than most operational satellites, resulting in a shorter minimal time between two images required to produce a suitable parallax. In addition, images made by the ISS crew are taken by a full frame sensor and not a line scanner that most operational satellites use. Such data make possible to observe also short time evolution of clouds.

The second method is based on the parallax between data retrieved from two geostationary instruments. We implemented a combination of MSG SEVIRI (HRV band; 1000 m nadir spatial resolution, 5 min temporal resolution) and METEOSAT7 MVIRI (VIS band, 2500 m nadir spatial resolution, 30 min temporal resolution). The procedure works well if the data from both satellites are retrieved nearly simultaneously. However, MVIRI does not retrieve the data at exactly the same time as SEVIRI. To compensate for advection in the atmosphere we use two sequential SEVIRI images (one before and one after the MVIRI retrieval) and interpolate the cloud position from SEVIRI data to the time of MVIRI retrieval.