GC51E-1125
Variable Trends in High Peak Flow Generation Across the Swedish Sub-Arctic

Friday, 18 December 2015
Poster Hall (Moscone South)
Bettina Matti, Stockholm University, Stockholm, Sweden
Abstract:
There is growing concern about increased frequency and severity of floods and droughts globally in recent years. Improving knowledge on the complexity of hydrological systems and their interactions with climate is essential to be able to determine drivers of these extreme events and to predict changes in these drivers under altered climate conditions. This is particularly true in cold regions such as the Swedish Sub-Arctic where independent shifts in both precipitation and temperature can have significant influence on extremes. This study explores changes in the magnitude and timing of the annual maximum daily flows in 18 Swedish sub-arctic catchments. The Mann-Kendall trend test was used to estimate changes in selected hydrological signatures. Further, a flood frequency analysis was conducted by fitting a Gumbel (Extreme Value type I) distribution whereby selected flood percentiles were tested for stationarity using a generalized least squares regression approach.

Our results showed that hydrological systems in cold climates have complex, heterogeneous interactions with climate. Shifts from a snowmelt-dominated to a rainfall-dominated flow regime were evident with all significant trends pointing towards (1) lower flood magnitudes in the spring flood; (2) earlier flood occurrence; (3) earlier snowmelt onset; and (4) decreasing mean summer flows. Decreasing trends in flood magnitude and mean summer flows suggest permafrost thawing and are in agreement with the increasing trends in annual minimum flows. Trends in the selected flood percentiles showed an increase in extreme events over the entire period of record, while trends were variable under shorter periods. A thorough uncertainty analysis emphasized that the applied trend test is highly sensitive to the period of record considered. As such, no clear overall regional pattern could be determined suggesting that how catchments are responding to changes in climatic drivers is strongly influenced by their physical characteristics.