NH52A-08
Investigating the Spatial Characteristics of Forest Fire in North Korea using Remote Sensing and GIS

Friday, 18 December 2015: 12:05
309 (Moscone South)
Jin RI, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea and Kyoo-seock Lee, Sungkynkwan University, daejeon, South Korea
Abstract:
Forest fires cause billions of dollar damage to property and the environment in the world every year. In North Korea (NK) forest fire occurred frequently in the entire region with the exception of the western plains and massive forest fires broke out throughout NK in May 2004. Furthermore, few researches focused on NK forest fire because of data unavailability and inaccessibility to the region. Operational fire monitoring over large areas can be approached through satellite remote sensing (RS). Thus, it is necessary to investigate the area damaged by forest fire and get information of damaged area for restoration of forest in NK after reunification. Therefore, the purpose of this study is to identify the location of forest fire and to estimate the damaged area by forest fire and finally to detect the landscape change after forest fire in Gangwon and South Hamgyong Province, NK using satellite RS data.

In this study, we will investigate the area damaged by forest fire and investigate the spatial characteristics of forest fire in Gangwon and South Hamgyong Province using RS. Landsat data from USGS Were preprocessed (band composition), NBR and dNBR are calculated for figuring out the burned area and investigating the burn severity (BS) in burned area. NBR and dNBR (differenced NBR) are mostly useful to estimate BS by forest fires damage from RS data. The dNBR was then calculated by subtracting the post-fire NBR from the pre-fire NBR:

The burned area from Landsat data processing were stored in GIS database to be retrieved and analyzed to figure out the chronological change pattern of forest fire damaged area. Finally, the spatiotemporal characteristics of forest fire in NK were analyzed and discussed to provide the information for restoring forest fire damaged area after reunification.