SA51B-2401
A Modified Kriging Method to Interpolate the Soil Moisture Measured by Wireless Sensor Network with the Aid of Remote Sensing Images

Friday, 18 December 2015
Poster Hall (Moscone South)
Jialin Zhang1, Qiang Liu2, Xiuhong Li2, Hailin Niu2 and Erli Cai2, (1)Beijing Normal University, State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing, China, (2)Beijing Normal University, Beijing, China
Abstract:
In recent years, wireless sensor network (WSN) emerges to collect Earth observation data at relatively low cost and light labor load, while its observations are still point-data. To learn the spatial distribution of a land surface parameter, interpolating the point data is necessary. Taking soil moisture (SM) for example, its spatial distribution is critical information for agriculture management, hydrological and ecological researches. This study developed a method to interpolate the WSN-measured SM to acquire the spatial distribution in a 5km*5km study area, located in the middle reaches of HEIHE River, western China. As SM is related to many factors such as topology, soil type, vegetation and etc., even the WSN observation grid is not dense enough to reflect the SM distribution pattern. Our idea is to revise the traditional Kriging algorithm, introducing spectral variables, i.e., vegetation index (VI) and abledo, from satellite imagery as supplementary information to aid the interpolation. Thus, the new Extended-Kriging algorithm operates on the spatial & spectral combined space. To run the algorithm, first we need to estimate the SM variance function, which is also extended to the combined space. As the number of WSN samples in the study area is not enough to gather robust statistics, we have to assume that the SM variance function is invariant over time. So, the variance function is estimated from a SM map, derived from the airborne CASI/TASI images acquired in July 10, 2012, and then applied to interpolate WSN data in that season. Data analysis indicates that the new algorithm can provide more details to the variation of land SM. Then, the Leave-one-out cross-validation is adopted to estimate the interpolation accuracy. Although a reasonable accuracy can be achieved, the result is not yet satisfactory. Besides improving the algorithm, the uncertainties in WSN measurements may also need to be controlled in our further work.