AE33B-0498
High Frequency Propagation modeling in a disturbed background ionosphere: Results from the Metal Oxide Space Cloud (MOSC) experiment
Wednesday, 16 December 2015
Poster Hall (Moscone South)
Dev Raj Joshi, Boston College/Inst Sci Res, Chestnut Hill, MA, United States
Abstract:
The Air Force Research Laboratory (AFRL) launched two sounding rockets in the Kwajalein Atoll, Marshall Islands, in May 2013 known as the Metal Oxide Space Cloud (MOSC) experiment to study the interactions of artificial ionization and the background plasma. The rockets released samarium metal vapor in the lower F-region of the ionosphere that ionized forming a plasma cloud. A host of diagnostic instruments were used to probe and characterize the cloud including the ALTAIR incoherent scatter radar, multiple GPS and optical instruments, satellite radio beacons, and a dedicated network of high frequency (HF) radio links. Data from ALTAIR incoherent scatter radar and HF radio links have been analyzed to understand the impacts of the artificial ionization on radio wave propagation. During the first release the ionosphere was disturbed, rising rapidly and spread F formed within minutes after the release. To address the disturbed conditions present during the first release, we have developed a new method of assimilating oblique ionosonde data to generate the background ionosphere that can have numerous applications for HF systems. The link budget analysis of the received signals from the HF transmitters explains the missing low frequencies in the received signals along the great circle path. Observations and modeling confirm that the small amounts of ionized material injected in the lower-F region resulted in significant changes to the natural propagation environment.