A11J-0189
Use of high-scale traffic modeling to estimate road vehicle emissions of CO2 and impact on the atmospheric concentration in São Paulo, Brazil.

Monday, 14 December 2015
Poster Hall (Moscone South)
Pedro Perez-Martinez1, Regina Maura Miranda1, Maria de Fatima Andrade1 and MASAIRE, (1)USP University of Sao Paulo, São Paulo, Brazil
Abstract:
Adequate estimations of motor vehicle CO2 emission inventories at high spatial and temporal urban scales are needed to establish transport policy measures aim to reduce climate change impacts from global cities. The Metropolitan Region of São Paulo (MRSP) is impacted by the emission of 7 million vehicles (97% light-duty gasoline vehicles LDVs and 3% heavy-duty diesel vehicles HDVs) and several environmental programs were implemented to reduce the emissions. Inventories match site measurements and remote sensing and help to assess the real impact of road vehicle emissions on city’s air quality. In this paper we presented a high-resolution vehicle-based inventory of motor CO2 emissions mapped at a scale of 100 m and 1 hour. We used origin and destination (O/D) transport area zone trips from the mobility survey of the São Paulo Transport Metropolitan Company (Metro), a road network of the region and traffic datasets from the São Paulo Transport Engineering Company (CET). The inventory was done individually for LDVs and HDVs for the years 2008 and 2013 and was complemented with air quality datasets from the State Environmental Company (CETESB), together with census data from the Brazilian Institute of Geography and Statistics (IBGE). Our inventory showed partial disagreement with the São Paulo State’s GHG inventory, caused by the different approach used - bottom vs. top down – and characteristic spatial and temporal biases of the population inputs used (different emission factors). Higher concentrations became apparent near the road-network at the spatial scale used. The total emissions were estimated in 20,781 million tons per year of CO2eq (83.7% by LDVs and 16.3% HDVs). Temporal profiles - diurnal, weekly and monthly - in vehicle emission distributions were calculated using CET’s traffic counts and surrogates of congestion. These profiles were compared with average road-site measurements of CO2 for the year 2013. Measurements showed two peaks associated to the morning/evening peak hour of vehicles, one in the morning of 430 ppm at 8:00 am, and the average concentration was 406 ± 12 ppm. Correlation analyses were performed between the vehicle kilometers travelled (VKT), the CO2 concentrations (proxy for the temporal variation of the CO2 emission) and the census data (personal income and hospital admissions).