Mapping sub-crustal reflectors in southwestern Spain

Monday, 14 December 2015
Poster Hall (Moscone South)
Imma Palomeras1, Puy Ayarza2, Ramon Carbonell3, Siddique Akhtar Ehsan3, Juan Carlos Afonso4 and Jordi Diaz Cusi3, (1)ICTJA-CSIC, Earth Structure and Dynamics, Barcelona, Spain, (2)University of Salamanca, Salamanca, Spain, (3)ICTJA-CSIC, Barcelona, Spain, (4)Macquarie University, Sydney, NSW, Australia
During the last 15 years, the IBERSEIS and ALCUDIA controlled source experiments have acquired vertical incidence and wide angle seismic reflection data in southwest Spain, in the Variscan Sub-Portuguese, Ossa-Morena and Central-Iberian Zones. Apart from providing detailed information of the crust, these datasets have also imaged a conspicuous sub-crustal reflector. First identified on the IBERSEIS wide-angle reflection dataset, this interface seemed to feature a positive seismic impedance contrast. A boundary located between 61-72 km depth, with a Vp increase from 8.2 km/s to 8.3 km/s allowed us to model clear wide-angle reflections found above 180 km offsets. The fact that this reflector was not identified in the coincident vertical incidence dataset led us to interpret it as a gradient zone. A correlation with the ‘Hales gradient zone’, i.e. the boundary between spinel and garnet peridotites was our preferred interpretation.

The ALCUDIA experiment, later acquired northwards of the IBERSEIS profiles, also shows prominent sub-crustal arrivals with the same characteristics as those observed in the IBERSEIS wide-angle data. However, these reflections also appear, locally and at 19 s TWT, in the vertical incidence dataset, further constraining the depth at which this feature is located. In addition, the ALCUDIA wide-angle dataset shows deeper sub-horizontal reflectivity (at Vred=8 km/s) that maybe preliminarily associated with mantle anisotropy or even, with the lithosphere-astenosphere boundary.

Integration of the information provided by the IBERSEIS and ALCUDIA datasets with older and lower resolution data from the ILIHA project, where three sub-crustal phases were identified in SW Iberia, allows us to conclude that, in this area, mantle reflectivity is outstanding. Also, modeling of all the datasets contributes to map, at a regional scale, the Hales discontinuity or gradient zone in southwest Iberia. Further research, involving receiver function analysis is necessary to propose a model of the mantle in this privileged area in terms of reflectivity.