ED51E-01
The Citizen CATE Experiment for the 2017 Total Solar Eclipse

Friday, 18 December 2015: 08:00
104 (Moscone South)
Matthew J Penn, National Solar Observatory, Tucson, AZ, United States and Citizen CATE Experiment Team
Abstract:
The path of the total solar eclipse of 21 August 2017 passes over about 10 million homes in the USA. Tens of millions more people will travel to the path of totality to view the eclipse first-hand. Using TV and the internet broadcasts, hundreds of millions of people will watch the eclipse, making the event the most viewed astronomical event in the history of mankind.

The Citizen Continental-America Telescopic Eclipse (CATE) Experiment for 2017 is being developed at the National Solar Observatory in partnership with universities, schools, astronomy clubs, and corporations. The CATE experiment will use more than 60 identical telescopes equipped with digital cameras positioned from Oregon to South Carolina to image the solar corona. The project will then splice these images together to show the corona during a 90-minute period, revealing for the first time the plasma dynamics of the inner solar corona. The goals for the highly leveraged CATE experiment are diverse and range from providing an authentic STEM research experience for students and lifelong learners, to making state-of-the-art solar coronal observations of the plasma dynamics of coronal polar plumes, to increasing the US scientific literacy.

A key goal of this experiment is to donate the telescope and camera system to the volunteer who collects data with it during the total eclipse. The instrument will be then used for a variety of follow-up citizen science projects in astronomy, ranging from solar to cometary to variable star observations. For this reason no government funding is being sought for the equipment costs, but rather private and corporate sources are being developed.

The data collected for the 2017 eclipse will be freely available to the scientific, education and amateur astronomy communities. Crowd sourcing the data collection is an essential part of this project, as there are not enough solar physicists in this country to collect these observations. Finally, each site is expected to collect about 10 Gbytes of science data and 10 Gbytes of calibration data, resulting in 1.2 Tbytes of data for the project.