P11E-06
Can cirrus clouds warm early Mars?

Monday, 14 December 2015: 09:15
2007 (Moscone West)
Ramses M Ramirez, Cornell University, Astronomy, Ithaca, NY, United States
Abstract:
The presence of the ancient valley networks on Mars indicates a climate 3.8 Ga that was warm enough to allow substantial liquid water to flow on the martian surface for extended periods of time. However, the origin of these enigmatic features is hotly debated and discussion of their formation has been focused on how warm such a climate may have been and for how long. Recent warm and wet solutions using single-column radiative convective models involve supplementing CO2-H2O atmospheres with other greenhouse gases, such as H2 (i.e. Ramirez et al., 2014; Batalha et al., 2015). An interesting recent proposal, using the CAM 3-D General Circulation model, argues that global cirrus cloud decks in CO2-H2O atmospheres with at least 0.25 bar of CO2 , consisting of 10-micron (and larger) sized particles, could have generated the above-freezing temperatures required to explain the early martian surface geology (Urata and Toon, 2013). Here, we use our single-column radiative convective climate model to check these 3-D results and analyze the likelihood that such warm atmospheres, with mean surface pressures of up to 3 bar, could have supported cirrus cloud decks at full and fractional cloud cover for sufficiently long durations to form the ancient valleys. Our results indicate that cirrus cloud decks could have provided the mean surface temperatures required, but only if cloud cover approaches 100%, in agreement with Urata and Toon (2013). However, even should cirrus cloud coverage approach 100%, we show that such atmospheres are likely to have been too short-lived to produce the volumes of water required to carve the ancient valleys. At more realistic early Mars cloud fractions (~50%, Forget et al., 2013), cirrus clouds do not provide the required warming.

Batalha, N., Domagal-Goldman, S. D., Ramirez, R.M., & Kasting, J. F., 2015. Icarus258, 337-349.

Forget, F., Wordsworth, R., Millour, E., Madeleine, J. B., Kerber, L., Leconte, J., ... & Haberle, R. M., 2013. Icarus222,1, 81-99.

Ramirez, R. M., Kopparapu, R., Zugger, M. E., Robinson, T. D., Freedman, R., & Kasting, J. F., 2014. Nature Geoscience7,1, 59-63.

Urata, R.A., and Toon, O.B., 2013. Icarus 226,1, 229-250