A23H-04
Aerosol Hygroscopicity Measured in Pristine and Polluted Conditions During the First Year of the GoAmazon 2014/15 Experiment
Tuesday, 15 December 2015: 14:25
3008 (Moscone West)
Henrique M Barbosa, Instituto de Física, Universidade de São Paulo., São Paulo, Brazil
Abstract:
The effects of aerosol particles on cloud microphysical properties, cloud cover, precipitation, and regional climate are an important aspect of the climate system. The Amazon region is particularly susceptible to changes in number-diameter distributions of the atmospheric particle population because of the low background concentrations and high water vapor levels, indicating a regime of cloud properties that is highly sensitive to aerosol microphysics. This natural regime, different from most other continental areas worldwide, is expected to be perturbed by the interaction of the Manaus urban plume with the natural the natural environment. Studying the effects of this interaction on the cloud and aerosol life cycle is the main objective of the Green Ocean Amazon (GoAmazon) campaign taking place around Manaus-Brazil from January 2014 to December 2015. In this paper we compare the particle hygroscopicity calculated from measurements of size-resolved cloud condensation nuclei performed at three ground sites during the first year of the GoAmazon 2014/15 experiment. Site T3 is about 70 km downwind from Manaus experiencing urban polluted and background conditions; site T2 is just across the Rio Negro from Manaus and CCN measurements were performed there only from 15 August 2014 to 30 Jan 2015; and T0, at the Amazon Tall Tower Observatory (ATTO), is a pristine site about 200 km upwind from Manaus. Our results indicate a lower hygroscopicity under polluted conditions (mean kappa values around 0.14 to 0.16) than under clean conditions (mean kappa around 0.2 to 0.3). At the clean site, it was possible to identify peaks of large sea salt particles with organic coating, while small particles seems to be purely organic. The activation fraction and hygroscopicity will be compared and discussed as a function of particle size. The mean kappa at ATTO is 0.17+-0.05 (mean of June and September) when there is no impact from long range transport from Africa or fresh soot emissions affecting the site.