PP41A-2223
Atmospheric Compensation of Variations in Tropical Ocean Heat Transport: Understanding Mechanisms and Implications on Tectonic Timescales
Thursday, 17 December 2015
Poster Hall (Moscone South)
Michael Cameron Rencurrel, SUNY at Albany, Department of Atmospheric and Environmental Sciences, Albany, NY, United States and Brian E J Rose, University at Albany State University of New York, Albany, NY, United States
Abstract:
The poleward transport of energy is a key aspect of the climate system, with surface ocean currents presently dominating the transport out of deep tropics. A classic study by Stone (1978) proposed that the total heat transport is determined by astronomical parameters and is highly insensitive to the detailed atmosphere-ocean dynamics. On the other hand, previous modeling work has shown that past continental configurations could have produced substantially different tropical ocean heat transport (OHT). How thoroughly does the atmosphere compensate for changes in ocean transport in terms of the top-of-atmosphere (TOA) radiative budget, what are the relevant mechanisms, and what are the consequences for surface temperature and climate on tectonic timescales? We examine these issues in a suite of aquaplanet GCM simulations subject to large prescribed variations in OHT. We find substantial but incomplete compensation, in which adjustment of the atmospheric Hadley circulation plays a key role. We then separate out the dynamical and thermodynamical components of the adjustment mechanism. Increased OHT tends to warm the mid- to high latitudes without cooling the tropics due asymmetries in radiative feedback processes. The warming is accompanied by hydrological cycle changes that are completely different from those driven by greenhouse gases, suggesting that drivers of past global change might be detectable from combinations of hydroclimate and temperature proxies.