GP23B-1310
Nature of the Jurassic Magnetic Quiet Zone revealed by the sea-surface, mid-water, and near-source magnetic sensor data in the western Pacific.

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Masako Tominaga, Texas A & M University College Station, College Station, TX, United States, Maurice Tivey, National Science Foundation, Arlington, VA, United States and William W Sager, University of Houston, Earth and Atmospheric Sciences, Houston, TX, United States
Abstract:
The nature of the Jurassic Quiet Zone (JQZ) has been a long-standing debate in understanding Earth’s geomagnetic field history and behavior. We present a coherent and likely globally significant marine magnetic reversal record for the JQZ by constructing a correlation of new and previously acquired magnetic anomaly profiles in the western Pacific. We obtained a high-resolution marine magnetic anomaly record using sea surface, mid-water (3-km level deep-towed), and near-bottom (Autonomous Underwater Vehicle (AUV)) profiles that targeted a spreading corridor in the Hawaiian lineation in 2011 (TN272 on R/V Thompson) and 2014 (SKQ2014S2 on R/V Sikuliaq). To extract crustal magnetic signals, the sea surface and mid-water magnetic data were corrected for ship-to-sensor offset, the diurnal effect, and the present-day ambient geomagnetic field. Mid-water data were upward continued to a constant 3 km level plane and to the sea surface. Near-bottom data were calibrated to remove the induced magnetic field by AUV Sentry, then corrected for IGRF and diurnal variations. We used these near-source data as an anchor for correlations with the sea surface and mid-water level data because of the AUV’s superb inertial navigation and hydrodynamically stable, quiet platform environment. Our sea surface anomaly correlation with the previously established Japanese lineation sequence shows (i) an excellent correlation of anomaly shapes from M29 to M42; (ii) a remarkable similarity in anomaly amplitude envelope, which decreases back in time from M19 to M38, with a minimum at M41, then increases back in time from M42; and (iii) refined locations of pre-M25 lineations in the Hawaiian lineation set. Moreover, short-wavelength anomalies from the mid-water and near-bottom profiles show a strong similarity in the M37/M38 polarity attributes found both in the magnetostratigraphic and marine magnetic records, implying that rapid magnetic reversals were occurring at that time. The average reversal rate calculated from the new Hawaiian sea surface level synthetic block model, coincides with the anomalously high reversal rate for the Japanese lineations, suggesting that reversal rates are highest during periods with the lowest anomaly amplitudes, indicating a very unique period of geomagnetic field behavior in the Earth’s history.