Dust in High Latitudes in the Community Earth System Model since the Last Glacial Maximum

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Samuel Albani, Cornell University, Ithaca, NY, United States and Natalie M Mahowald, Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, United States
Earth System Models are one of the main tools in modern climate research, and they provide the means to produce future climate projections. Modeling experiments of past climates is one of the pillars of the Coupled Modelling Inter-comparison Project (CMIP) / Paleoclimate Modelling Inter-comparison Project (PMIP) general strategy, aimed at understanding the climate sensitivity to varying forcings. Physical models are useful tools for studying dust transport patterns, as they allow representing the full dust cycle from sources to sinks with an internally consistent approach.

Combining information from paleodust records and climate models in coherent studies can be a fruitful approach from different points of view. Based on a new quality-controlled, size- and temporally-resolved data compilation, we used the Community Earth System Model to estimate the mass balance of and variability in the global dust cycle since the Last Glacial Maximum and throughout the Holocene. We analyze the variability of the reconstructed global dust cycle at different climate equilibrium conditions since the LGM until the pre-industrial climate, and compare with palodust records, focusing on the high latitudes, and discuss the uncertainties and the implications for dust and iron deposition to the oceans.