PP31B-2236
A Stable U Isotopic Perspective on the U Budget and Global Extent of Modern Anoxia in the Ocean.

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Francois Tissot and Nicolas Dauphas, University of Chicago, Chicago, IL, United States
Abstract:
Isotopic fractionation between U4+ and U6+makes U stable isotopes potential tracers of global paleoredox conditions. In this work [1], we put the U-proxy up to a test against a highly constrained system: the modern ocean.

We measured a large number of seawater samples from geographically diverse locations and found that the open ocean has a homogenous isotopic composition at δ238USW= -0.392 ± 0.005 ‰ (rel. to CRM-112a). From our measurement of rock samples (n=64) and compilations of literature data (n=380), we then estimated the U isotopic compositions of the various reservoirs involved in the modern oceanic U budget, as well as the fractionation factors associated with U incorporation into those reservoirs. Using a steady-state model, we compared the isotopic composition of the seawater predicted by the four most recent U oceanic budgets [2-5] to the modern seawater value we measured.

Three of these budgets [2-4] predict a seawater isotopic composition in very good agreement with the observed δ238USW, which strengthens our confidence in the isotopic fractionation factors associated with each deposition environment and the fact that U is at steady-state in the modern ocean. The U oceanic budget of Henderson and Anderson (2003) does not reproduce the observed seawater composition because the U flux to anoxic/euxinic sediments relative to the total U flux out of the ocean is high in their model, which our analysis shows cannot be correct. The U isotopic composition of seawater is used to constrain the extent of anoxia in the modern ocean (% of seafloor covered by anoxic/euxinic sediments), which is 0.21 ± 0.09 %.

This work demonstrates that stable isotopes of U can indeed trace the extent of anoxia in the modern global ocean, thereby validating the application of U isotope measurements to paleoredox reconstructions. Based on the above work, we will present the best estimate of the modern oceanic U budget.

[1] Tissot F.L.H., Dauphas N. (2015) Geochim Cosmochim Ac 167, 113-143 [2] Barnes C. E., Cochran J. K. (1990) Earth Planet Sc Lett 97, 94-101 [3] Morford J. L., Emerson S. (1999) Geochim Cosmochim Ac 63, 1735-1750 [4] Dunk R. M., Mills R. A., Jenkins W. J. (2002) Chemical Geology 190, 45-67 [5] Henderson G. M., Anderson R. F. (2003) Rev Mineral Geochem 52, 493-531