NH21C-1827
Diffraction and Dissipation of Atmospheric Waves in the Vicinity of Caustics

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Oleg A Godin, University of Colorado at Boulder, CIRES, Boulder, CO, United States
Abstract:
A large and increasing number of ground-based and satellite-borne instruments has been demonstrated to reliably reveal ionospheric manifestations of natural hazards such as large earthquakes, strong tsunamis, and powerful tornadoes. To transition from detection of ionospheric manifestations of natural hazards to characterization of the hazards for the purposes of improving early warning systems and contributing to disaster recovery, it is necessary to relate quantitatively characteristics of the observed ionospheric disturbances and the underlying natural hazard and, in particular, accurately model propagation of atmospheric waves from the ground or ocean surface to the ionosphere. The ray theory has been used extensively to model propagation of atmospheric waves and proved to be very efficient in elucidating the effects of atmospheric variability on ionospheric signatures of natural hazards. However, the ray theory predicts unphysical, divergent values of the wave amplitude and needs to be modified in the vicinity of caustics. This paper presents an asymptotic theory that describes diffraction, focusing and increased dissipation of acoustic-gravity waves in the vicinity of caustics and turning points. Air temperature, viscosity, thermal conductivity, and wind velocity are assumed to vary gradually with height and horizontal coordinates, and slowness of these variations determines the large parameter of the problem. Uniform asymptotics of the wave field are expressed in terms of Airy functions and their derivatives. The geometrical, or Berry, phase, which arises in the consistent WKB approximation for acoustic-gravity waves, plays an important role in the caustic asymptotics. In addition to the wave field in the vicinity of the caustic, these asymptotics describe wave reflection from the caustic and the evanescent wave field beyond the caustic. The evanescent wave field is found to play an important role in ionospheric manifestations of tsunamis.