V53D-3144
Magnetostratigraphic Record of the Early Evolution of the Southwestern Tian Shan Foreland Basin (Ulugqat Area), Interactions with Pamir Indentation and India-Asia Collision
Friday, 18 December 2015
Poster Hall (Moscone South)
Wei Yang and Siwei Wang, China University of Petroleum, Beijing, China
Abstract:
The Tian Shan range is an inherited intracontinental structure reactivated by the far-field effects of India-Asia collision. A growing body of thermochronology and magnetostratigraphy datasets shows the range grew through several tectonic pulses since ~25 Ma, however the early Cenozoic history remains poorly constrained. Particularly enigmatic is the time-lag between the Eocene India-Asia collision and the Miocene onset of Tian Shan exhumation. This peculiar period is potentially recorded along the southwestern Tian Shan piedmont. There, recently dated late Eocene marine deposits of the proto-Paratethys epicontinental sea transition to continental foreland basin sediments of unknown age. We provide magnetostratigraphic dating of these continental sediments from the 1700-m-thick Mine section integrated with previously published detrital apatite fission track and U/Pb zircon ages. The most likely correlation to the geomagnetic polarity time scale indicates an age span from 20.8 to 13.3 Ma with a marked accumulation rate increase at 19-18 Ma. This implies the entire Oligocene period is missing between the last marine and first continental sediments, as suggested by previous southwestern Tian Shan results. This differs from the southwestern Tarim basin where Eocene marine deposits are continuously overlain by late Eocene-Oligocene continental sediments. This supports a simple evolution model of the western Tarim basin with Eocene-Oligocene foreland basin activation to the south related to northward thrusting of the Kunlun Shan, followed by early Miocene activation of northern foreland basin related to overthrusting of the south Tian Shan. Our data also support southward propagation of the Tian Shan piedmont from 20-18 Ma that may relate to motion on the Talas Fergana Fault. The coeval activation of a major right-lateral strike-slip system allowing indentation of the Pamir Salient into the Tarim basin, suggest far-field deformation from the India-Asia collision zone affected the Tian Shan and the Talas Fergana fault by early Miocene.