P43D-2153
Impact of Diagenesis on Biosignature Preservation Potential in Playa Lake Evaporites in Verde Formation, Arizona: Implications for Mars Exploration
Thursday, 17 December 2015
Poster Hall (Moscone South)
Svetlana Shkolyar, Arizona State University, Tempe, AZ, United States and Jack D Farmer, Arizona State Univ, Tempe, AZ, United States
Abstract:
Major priorities for Mars science include assessing the preservation potential and impact of diagenesis on biosignature preservation in aqueous sedimentary environments. We address these priorities with field and lab studies of playa evaporites of the Verde Formation (upper Pliocene) in Arizona. Evaporites studied include bottom-nucleated halite and displacive growth gypsum in magnesite-rich mudstone. These lithotypes are potential analogs for ancient lacustrine habitable environments on Mars. This study aimed to understand organic matter preservation potential under different diagenetic histories. Methods combined outcrop-scale field observations and lab analyses, including: (1) thin-section petrography to understand diagenetic processes and paragenesis; (2) X-ray powder diffraction to obtain bulk mineralogy; (3) Raman spectroscopy to identify and place phases (and kerogenous fossil remains) within a microtextural context; (4) Total Organic Carbon (TOC) analyses to estimate weight percentages of preserved organic carbon for each subfacies endmember; and (5) electron microprobe to create 2D kerogen maps semi-quantifying kerogen preservation in each subfacies. Results revealed complex diagenetic histories for each evaporite subfacies and pathways for organic matter preservation. Secondary gypsum grew displacively within primary playa lake mudstones during early diagenesis. Mudstones then experienced cementation by Mg-carbonates. Displacive-growth gypsum was sometimes dissolved, forming crystal molds. These molds were later either infilled by secondary sulfates or recrystallized to gypsum pseudomorphs with minor phases present (i.e., glauberite). These observations helped define taphonomic models for organic matter preservation in each subfacies. This work has the potential to inform in situ target identification, sampling strategies, and data interpretations for future Mars Sample Return missions (e.g., sample caching strategies for NASA’s Mars 2020 mission).