A31B-0033
Improvement of Atmospheric CO2 Inversion Analysis at JMA

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Takashi Nakamura, Japan Meteorological Agency, Tokyo, Japan and Takashi Maki, Meteorological Research Institute, Ibaraki, Japan
Abstract:
The Japan Meteorological Agency (JMA) has developed a new inversion system of atmospheric CO2 mole fraction and flux for better understanding of global carbon budget and contribution to global carbon cycle studies. The new system introduces a newly developed on-line atmospheric tracer transport model (GSAM-TM). Its tracer transport process is directly coupled with a low resolution version (TL95) of JMA's operational global numerical weather prediction (NWP) model (JMA_GSM), using mass conservative semi-Lagrangian scheme and Arakawa-Shubert mass flux scheme for vertical convective transportation. It represents mass transportation, mass conservation, and structures of tracer distribution more precisely than JMA's previous transport model (CDTM), which is off-line tracer transport model using semi-Lagrangian scheme and Kuo-based convection scheme with multiplying globally uniform coefficient for mass conservation. The new system also introduces new a priori fluxes for fossil fuel consumption and oceanic CO2 exchange.

In this study, we compare CO2 mole fraction field and flux estimates of the new system against that of current annual JMA analysis with CDTM. The new system represents better atmospheric CO2 distribution structure than the current system does especially vertical gradient around tropopause. Due to improvement of fossil fuel CO2 diffusion estimates, analyzed regional budget over Eurasian Continent changed clearly. Budgets for less observation area (South America and Africa) are also changed. Globally averaged atmospheric CO2 budget is not changed significantly.

This new system is planned to be operationally implemented in 2016, and we will further improve the CO2 inversion analysis for understanding of carbon cycle.