A11B-0037
Chemical Characterization and Formation of Reactive Oxygen Species by PM2.5 during Summer in North China Plain of China

Monday, 14 December 2015
Poster Hall (Moscone South)
Xiaoying Li1, Xiaobi Kuang2, Caiqing Yan1, Xiaoshuang Guo1, Suzanne E Paulson3 and Mei Zheng1, (1)Peking University, Beijing, China, (2)University of California at Los Angeles, Department of Atmospheric and Oceanic Sciences, Los Angeles, CA, United States, (3)UCLA, Los Angeles, CA, United States
Abstract:
Ambient particulate matter (PM) could cause adverse health effects by generating reactive oxygen species (ROS) including superoxide (·O2-), hydrogen peroxide (HOOH), and hydroxyl radical (·OH). A number of studies have shown that transition metals, quinones, as well as other unknown organics in particles, may contribute to ROS formation. North China Plain (NCP) is one of the most populated and polluted areas in the world, where Beijing, the capital of China, is located. NCP have been suffering from severe air pollution, and health effects of fine PM have drawn great attentions of both the government and the public. To study the chemical characterization and ROS generation of PM, airborne PM2.5 was collected at two sites, with one urban site on the campus of Peking University in Beijing and one suburban site in Wangdu, Hebei Province, which is located in the south of Beijing and was significantly influenced by biomass burning during the study period. Previous studies have shown that Beijing can be more influenced by regional transport when the prevailing wind is from the south. PM2.5 samples were collected on 47 mm Teflon filter and Quartz filter using the four-channel low-volume sampler, and organic carbon (OC), elemental carbon (EC), water soluble organic carbon (WSOC), soluble ions and trace metals have been analyzed. The formation of ·OH induced by PM2.5 was also measured to characterize the chemical generation of ROS from ambient particles in a cell-free solution. Preliminary analysis showed that during biomass burning periods, OC and EC concentrations in Wangdu were significantly higher than that in Beijing. The average concentration of WSOC in Beijing was comparable to that in Wangdu, while during biomass burning period, that in Wangdu was much higher than that in Beijing. Positive matrix factorization (PMF) was applied to identify the major contributing sources of PM2.5. More detailed information about chemical compositions, sources and ROS generation of PM2.5 will be discussed.