NH23C-1906
Tsunami Induced Sedimentation in Ports; A Case Study in Haydarpasa Harbor, Marmara Sea

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Rozita Kian1, Deniz Velioglu1, Ahmet Cevdet Yalçıner1 and Andrey Zaytsev2, (1)Middle East Technical University, Ankara, Turkey, (2)Special Research Bureau, Far Eastern Branch of Automation of Sciences, Yuzhno Sakhalinsk, Russia
Abstract:
The movement of sea bottom or ground sediment material by tsunami cause erosion, deposition and hence bathymetry and topogrphy changes. The unexpected depth decrease at some parts of the enclosed basins and harbors may result in lack of movements of vessels. In order to understand the sediment movement inside the enclosed basins, Haydarpasa port in the sea of Marama is selected as a case study to understand the motion of tsunamis inside the port and identify their effects on harbor functions. The highest populated mega city Istanbul, located at north coast of the Sea of Marmara is one of the main centers of major economic activities in the region. In the study, the spatial and temporal changes of main tsunami parameters are investigated and their adverse effects on harbor performance are identified by analyzing the critical tsunami parameters (water elevation, current speed and momentum fluxes) in the port. Furthermore, the morphological changes due to tsunami induced flows are also considered. The morphological changes due to tsunamis can be governed by bathymetry and topography, tsunami current and the characteristics of ground material. Rouse number is one of the indicators to describe the initiation of sediment motion and transport modes under the flow. Therefore the morphological changes can be monitored by monitoring the change of the Rouse number. In this study the spatial and temporal change of Rouse number and hence modes of sediment transport in Haydarpasa port during a tsunami is investigated. Finally the functional loss of the port and the necessary strategies for reduction of tsunami impact and increase of resilience are also discussed.

The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 603839 (Project ASTARTE - Assessment, Strategy and Risk Reduction for Tsunamis in Europe)".