A24A-04
Analysis of Characteristics of Dust Aerosols in Northwest China based on Satellite Remote-sensing Data

Tuesday, 15 December 2015: 16:45
3012 (Moscone West)
Wu Zhang1, Dan Liu1 and Qingyun Zhao2, (1)Lanzhou University, Lanzhou, China, (2)Lanzhou Center Meteorological Observatory, Lanzhou, China
Abstract:
Based on the CloudSat data, effects of dust aerosol on cloud parameters under the circumstance of the monthly average, dusty days and dust-free days were analyzed during April, 2010. By using L2 aerosol profiles satellite data of CALIOP/CALIOPSO the aerosol extinction coefficients were analyzed over northwest China. As an important case, space distribution and transmission route of dust aerosol were investigated during the dust events occurred from April 16th to 18th in 2013 over northwest China, based on L1 data of CALIOP/CALIOPSO, a combination of multiple satellite data and models. The results show that (1) dust aerosols could cause the reduction in effective radius of particle, cloud liquid water content and cloud optical thickness, and the increase of the number concentration of liquid cloud particles as well, (2) The aerosol extinction coefficients were decreased with the increase of height. The value of the aerosol extinction coefficients in desert area was greater than that in the area of Gansu Province due to urbanization. Distribution of the aerosol extinction coefficients in spring was nearly the same as the annual average. (3) Using aerosol products of the vertical characteristics from CALIOP/CALIOPSO, aerosol was classified during dust events, and with NAPPS Global aerosol model, daily distribution of the dust aerosol concentration was given, showing the transport and diffusion of dust aerosol. With HYSPLIT trajectory model,dust transportation path of the sand dust source areas was simulated and identified. During the outbreak of dust event dust aerosol was mainly distributed over the surface about 3km, with depolarization ratio at 0.4 and color ratio at 1.2. During the dust events were close to weak and stop, dust aerosol was mainly distributed over the surface under 2 km, with depolarization ratio from 0.2 to 0.3, and color ratio about 1.