S53A-2776
Migration Based Event Detection and Automatic P- and S-Phase Picking in Hengill, Southwest Iceland
Friday, 18 December 2015
Poster Hall (Moscone South)
Frederic Wagner, Uppsala University, Uppsala, Sweden
Abstract:
Automatic detection of seismic events is a complicated process. Common procedures depend on the detection of seismic phases (e.g. P and S) in single trace analyses and their correct association with locatable point sources. The event detection threshold is thus directly related to the single trace detection threshold. Highly sensitive phase detectors detect low signal-to-noise ratio (S/N) phases but also produce a low percentage of locatable events. Short inter-event times of only a few seconds, which is not uncommon during seismic or volcanic crises, is a complication to any event association algorithm. We present an event detection algorithm based on seismic migration of trace attributes into an a-priori three-dimensional (3D) velocity model. We evaluate its capacity as automatic detector compared to conventional methods. Detecting events using seismic migration removes the need for phase association. The event detector runs on a stack of time shifted traces, which increases S/N and thus allows for a low detection threshold. Detected events come with an origin time and a location estimate, enabling a focused trace analysis, including P- and S-phase recognition, to discard false detections and build a basis for accurate automatic phase picking. We apply the migration based detection algorithm to data from a semi-permanent seismic network at Hengill, an active volcanic region with several geothermal production sites in southwest Iceland. The network includes 26 stations with inter-station distances down to 5 km. Results show a high success rate compared to the manually picked catalogue (up to 90% detected). New detections, that were missed by the standard detection routine, show a generally good ratio of true to false alarms, i.e. most of the new events are locatable.