ED14A-02
CATE: A Case Study of an Interdisciplinary Student-Led Microgravity Experiment

Monday, 14 December 2015: 16:15
310 (Moscone South)
Joshua E Colwell, Adrienne Dove, Sara Sylvia Lane, Christopher Tiller, Allyson Whitaker, Kelly Lai, Bradley Hoover and Samuel Benjamin, University of Central Florida, Orlando, FL, United States
Abstract:
The Collisional Accretion Experiment (CATE) was designed, built, and flown on NASA’s C-9 parabolic flight airplane in less than a year by an interdisciplinary team of 6 undergraduate students under the supervision of two faculty. CATE was selected in the initial NASA Undergraduate Student Instrument Project (USIP) solicitation in the Fall of 2013, and the experiment flight campaign was in July 2014. The experiment studied collisions between different particle populations at low velocities (sub-m/s) in a vacuum and microgravity to gain insight into processes in the protoplanetary disk and planetary ring systems. Faculty provided the experiment concept and key experiment design parameters, and the student team developed the detailed hardware design for all components, manufactured and tested hardware, operated the experiment in flight, and analyzed data post-flight. Students also developed and led an active social media campaign and education and public outreach campaign to engage local high school students in the project. The ability to follow an experiment through from conception to flight was a key benefit for undergraduate students whose available time for projects such as this is frequently limited to their junior and senior years. Key factors for success of the program included having an existing laboratory infrastructure and experience in developing flight payloads and an intrinsically simple experiment concept. Students were highly motivated, in part, by their sense of technical and scientific ownership of the project, and this engagement was key to the project’s success.