T43B-2981
Novel Techniques for Examining Detailed Microstructure of Two-phase Lower Mantle Mineral Analogs with SEM and EBSD

Thursday, 17 December 2015
Poster Hall (Moscone South)
Pamela M Kaercher1, Elisabetta Mariani2 and Karl Dawson2, (1)University of Liverpool, Liverpool, L69, United Kingdom, (2)University of Liverpool, Liverpool, United Kingdom
Abstract:
We examined deformation microstructures of an analog two-phase system of the lower mantle using scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). Halite (NaCl) and neighborite (NaMgF3) were used as analogs to lower mantle minerals ferropericlase (Mg,Fe)O and bridgmanite MgSiO3, respectively, and deformed to 30% strain at 4 GPa in the D-DIA. We have adapted techniques previously used for EBSD preparation of halite (NaCl) (e.g. Pennock et al. 2002, Journal of Microscopy, v205; Staiger et al. 2010, Materials Characterization, v61) to prepare halite and neighborite for EBSD. Because halite is soft and hydrophilic, it is tricky to prepare for high quality EBSD. On the other hand, neighborite is much harder than halite (with a bulk modulus 5 times that of halite) and requires high quality polishing for longer and through various polishing-medium sizes. EBSD maps were obtained by polishing with very fine colloidal alumina, followed by etching or a final polish in a precision ion polishing system (PIPS).

Distribution of phases, grain size and shape, and crystallographic preferred orientation were examined to determine which phase controls the deformation and which deformation mechanisms dominate. Preliminary results show the softer halite is likely interconnected at just 25 volume % or less and controls the deformation through a mechanism that does not promote development of crystallographic preferred orientation. This suggests that periclase may control deformation in the lower mantle resulting in a weaker, more viscous lower mantle and may help to explain why the bulk of the lower mantle is mostly isotropic.