SH21A-2373
Relative Heating of Heavy Ions Observed at 1 AU with ACE/SWICS

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Patrick Tracy1, Justin Christophe Kasper1, Thomas Zurbuchen1, Jim M Raines2 and Jason A Gilbert1, (1)University of Michigan Ann Arbor, Ann Arbor, MI, United States, (2)University of Michigan Ann Arbor, Department of Atmospheric, Oceanic and Space Sciences, Ann Arbor, MI, United States
Abstract:
Heavy ions (Z>4) observed near 1 AU, especially in fast solar wind, tend to have thermal speeds that are approximately equal, indicative of a mass proportional temperature. The fact that these heavy ions have similar thermal speeds implies that they have very different temperatures, and furthermore, that they are far from thermal equilibrium. By comparing the observed heavy ion temperatures amongst species with different mass and charge values we can critically evaluate heating theories for the solar wind.

Utilizing improved data processing techniques, results from the Solar Wind Ion Composition Spectrometer (SWICS) onboard the Advanced Composition Explorer (ACE) are used to analyze the thermal properties of the heavy ion population at 1 AU. We have shown in previous work that Coulomb Collisional relaxation has a significant effect on these heavy ion populations, and now we investigate how Coulomb Collisions effect the observed temperature ratios of different heavy ion species. We observe that the heavy ion to proton temperature ratio scales with the mass and charge values of species analyzed. These dependencies are compared to current heating theories to determine which best explains the observations. The results of this work are valuable for comparison with coronal spectroscopic observations of ion temperatures, existing solar wind observations at different distances from the Sun, and for predictions of the environment to be encountered by Solar Probe and Solar Orbiter.