H52F-08
Numerical simulation of the basin scale hydrogeological impacts of carbon sequestration in deep saline aquifers of the St. Lawrence Lowlands
Abstract:
Full-scale carbon capture and storage in deep saline aquifers implies injecting important quantities of carbon in order to significantly reduce greenhouse gases emissions. At the basin scale, impacts related to CO2 injection are pressure perturbation as well as brine migration into freshwater aquifers. In this study, potential impacts of an industrial-scale carbon capture and storage project in Bécancour (Quebec, Canada), in the St. Lawrence Lowlands basin, are discussed, as well as the role played by regional normal faults that divide the basin into multiple compartments. The basin is 300 km long and 90 km wide, formed by sub-horizontal Paleozoic formations on top of which the Utica and Lorraine shale formations represent the caprock of the potential CO2reservoir. These formations cover most of the basin, except in its eroded northwestern part, located between 10 to 40 km away from the potential injection sites.Three injection scenarios were considered, corresponding to greenhouse gases emissions from large emitters located; in Bécancour industrial park, in a larger area that allow affordable transport and in the entire basin without considering transport costs (1, 5, 10 Mt/yr). The numerical model FEFLOW was used to simulate CO2 injection into different compartments to evaluate pressure build up propagation and brine migration in order to define which compartments are best suited for long-term storage. The simulations considered an injection period of 100 years and post-injections period of 1000 years.
Numerical simulations indicate that normal faults, which exhibit a low hydraulic conductivity, play a major role orienting pressure build-up and brine migration. Due to the presence of normal faults, no pressure build up occurred close to the surface. Similarly, preliminary mass transport simulations show very limited brine migration. These first results indicate that basin-scale impacts of carbon injection are low for the 3 injection scenarios, however, the significant uncertainty about hydrodynamics parameters of formations and faults calls for an extensive sensitivity analysis.