PP21C-2262
Magnetic Susceptibility and Geochemistry Records in the Yax-1 Borehole in the Chicxulub Impact Crater: A paleoclimatic approach in the K/Pg and P/E Boundaries.

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Mariana Marca-Castillo1, Ligia L Perez-Cruz2, Jaime Urrutia Fucugauchi3 and Blanca Estela Buitrón Sánchez2, (1)UNAM National Autonomous University of Mexico, Postgraduate Program in Marine Sciences and Limnology, Mexico City, Mexico, (2)UNAM National Autonomous University of Mexico, Mexico City, Mexico, (3)Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
Abstract:
Chicxulub impact crater is located in the northwestern sector of Yucatan Peninsula, Mexico. It is the best-preserved multi-ring impact crater on Earth. Several studies have been focused in this crater structure due its association with the Cretaceous/Paleogenous boundary events. The aim of this study is document the abrupt climate changes during the K/Pg and P/E boundaries based on the stratigraphy, magnetic properties (magnetic susceptibility) and geochemical (major elements) records in the Yaxcopoil-1 (Yax-1) borehole in the Chicxulub impact crater.

The Yax 1 was drilled at 20° 44' 38.45'' N, 89° 43' 6.70'' W. Two intervals from 830 to 750 and between 750 and 700 m depth were selected for this study. Magnetic susceptibility logs and X-Ray Fluorescence (XRF) measures were taken every 10 cm using a Bartington magnetic susceptibility meter and a Thermo Scientific Niton XL3tGOLDD XRF analyzer.

Results show variations in magnetic susceptibility logs and major elements (Ca, Si, Fe, Ti and Si) content in the K/Pg boundary at ca. 794 m depth. Magnetic susceptibility decrease abruptly, Ca values increase, and the other elements show low values.

Geochemical results, manly the Ca-record, suggest that the P/E boundary might have happened around 745 m depth. These values are compared with 13C isotopes and they coincide with the Carbon Isotope Excursion (CIE), suggesting their relationship with the abrupt climate change and with the ocean acidification.