H13D-1572
Water Footprint of Hydroelectricity: A Case Study of Two Large Canadian Boreal Watersheds
Monday, 14 December 2015
Poster Hall (Moscone South)
Céleste Irambona1, Biljana Music2, Daniel Nadeau3 and Tew-Fik Mahdi1, (1)Ecole Polytechnique de Montreal, Montreal, QC, Canada, (2)Ouranos - Consortium on Regional Climatology and Adaptation to Climate Change, Montreal, QC, Canada, (3)Laval University, Civil and Water Engineering, Quebec City, QC, Canada
Abstract:
20% of Canada’s total freshwater is located in the province of Quebec, where 30% of the country’s energy is produced from hydropower. Hydroelectric generation uses a considerable amount of water through evaporation from the reservoirs. The blue water footprint is an indicator of the annual freshwater consumption related to hydropower production. Although environmental effects of reservoir impounding have been previously investigated, their impacts on local and regional evapotranspiration are still not well understood due to the lack of long-term observation data. This study aims to assess the blue water footprint of two large hydroelectric systems located in the Canadian boreal forest. To do so, we use hydro-meteorological data from two specially designed climate simulations (a ‘no-reservoir’ and a ‘post-impoundment’ simulation) performed by the fifth generation of the Canadian Regional Climate Model (CRCM5) driven by the ERA-Interim reanalysis. Land-surface processes in the CRCM5 are parameterized by the Canadian Land Surface Scheme (CLASS V3.6), while surface fluxes over the water bodies are simulated by the 1-D lake model (Flake). A ‘no-reservoir’ and a ‘post-impoundment’ simulation are carried by adjusting the water fraction on the reservoir grids. Both simulations cover a 42 years period (1970-2012) at 0.11° horizontal resolution, consisting of 300 x 300 grid points centered on the province of Quebec. The two watersheds under study (200 000 km² total) are located in Northern Quebec (49-54°N), Canada, where more than 42% of the province power generation capacity is installed with eight reservoirs covering a total area of 10 000 km². A first validation of the ‘post-impoundment’ simulation is performed using micrometeorological ground observations, complemented with available hydro-meteorological data from Environment Canada weather stations. Then, each reservoir water footprint is calculated using the ‘post-impoundment’ simulation. Finally, the net evapotranspiration and the pre and post impoundment water budgets are assessed on the watershed scale. Results from this study are expected to be useful for water resources management in Quebec and other similar boreal environments.