T13B-2998
Geodynamic models for the post-orogenic exhumation of the lower crust
Monday, 14 December 2015
Poster Hall (Moscone South)
Omer Faruk Bodur, Boğaziçi University, Kandilli Observatory and Earthquake Research Institute, İstanbul, Turkey, Oguz Gogus, Istanbul Technical University, Eurasia Institute of Earth Sciences, Maslak, Turkey, Hayrullah Karabulut, Kandilli Observatory, Istanbul, Turkey, Russell N Pysklywec, University of Toronto, Earth Sciences, Toronto, ON, Canada and Aral I Okay, Jeoloji Muh Bolumu, Istanbul, Turkey
Abstract:
Recent geodynamic modeling studies suggest that the exhumation of the high pressure and the very/ultra high-pressure crustal rocks may occur due to the slab detachment (break-off), slab roll-back (retreat) and the buoyancy-flow controlled subduction channel. We use convective removal (Rayleigh-Taylor, ‘dripping’ instability) mechanism to quantitatively investigate the burial and the exhumation pattern of the lower/middle crustal rocks from ocean subduction to post-collisional geodynamic configuration. In order to address the model evolution and track crustal particles for deciphering P-T-t variation, we conduct a series of thermo-mechanical numerical experiments with arbitrary Eularian-Lagrangian finite element code (SOPALE). We show how additional model parameters (e.g moho temperature, upper-middle crustal activation energy, density contrast between the lithosphere and the underlying mantle) can effectively influence the burial and exhumation depths, rate and the styles (e.g clockwise or counterclockwise). First series of experiments are designed to investigate the exhumation of crustal rocks at 32 km depth for only post-collisional tectonic setting -where pre-existing ocean subduction has not been implemented-. Model predictions show that a max. 8 km lower crustal burial occurs concurrent with the lower crustal convergence as a response to the mantle lithosphere dripping instability. The subsequent exhumation of these rocks up to -25 km- is predicted at an exhumation rate of 1.24 cm/year controlled by the removal of the underlying mantle lithosphere instability with crustal extension. At the second series of experiments, we tracked the burial and exhumation history of crustal particles at 22 and 31 km depths while pre-existing ocean subduction has been included before the continental collision. Model results show that burial depths down to 62 km occurs and nearly the 32 km of exhumation is predicted again by the removal of the mantle lithosphere after the dripping instability but the crustal rocks are buried deeper because of the downward forcing of the sinking ocean plate. We suggest that the first set of model results are comparable to the peak pressure calculations from the high pressure rocks of the Afyon Zone in western Turkey with a significant offset (175°C) in temperature values.