SH31D-05
Nanoflare Heating of the Quiet Sun

Wednesday, 16 December 2015: 09:00
2011 (Moscone West)
Nicholeen M Viall and James A Klimchuk, NASA Goddard Space Flight Center, Greenbelt, MD, United States
Abstract:
How the solar corona is heated to temperatures of over 1 MK, while the photosphere below is only ~ 6000 K remains one of the outstanding problems in all of space science. Solving this problem is crucial for understanding Sun-Earth connections, and will provide new insight into universal processes such as magnetic reconnection and wave-particle interactions. We use a systematic technique to analyze the properties of coronal heating throughout the solar corona using data taken with the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory. Our technique computes cooling times of the coronal plasma on a pixel-by-pixel basis and has the advantage that it analyzes all of the coronal emission, including the diffuse emission surrounding distinguishable coronal features. We have already applied this technique to 15 different active regions, and find clear evidence for dynamic heating and cooling cycles that are consistent with the 'impulsive nanoflare' scenario. What about the rest of the Solar corona? Whether the quiet Sun is heated in a similar or distinct manner from active regions is a matter of great debate. Here we apply our coronal heating analysis technique to quiet Sun locations. We find areas of quiet Sun locations that also undergo dynamic heating and cooling cycles, consistent with impulsive nanoflares. However, there are important characteristics that are distinct from those of active regions.