H11F-1417
Historical Tracking of Nitrate in Contrasting Vineyard Using Water Isotopes and Nitrate Depth Profiles
Monday, 14 December 2015
Poster Hall (Moscone South)
Matthias Sprenger1, Martin Erhardt2, Monika Riedel2 and Markus Weiler1, (1)Chair of Hydrology, Albert Ludwig University of Freiburg, Freiburg, Germany, (2)State Institute for Viticulture and Enology Freiburg, Freiburg, Germany
Abstract:
The European Water Framework Directive (EWFD) aims to achieve a good chemical status for the groundwater bodies in Europe by the year 2015. Despite the effort to reduce the nitrate pollution from agriculture within the last two decades, there are still many groundwater aquifers that exceed nitrate concentrations above the EWFD threshold of 50 mg/l. Viticulture is seen as a major contributor of nitrate leaching and sowing of a green cover was shown to have a positive effect on lowering the nitrate loads in the upper 90 cm of the soil. However, the consequences for nitrate leaching into the subsoil were not yet tested. We analyzed the nitrate concentrations and pore water stable isotope composition to a depth of 380 cm in soil profiles under an old vineyard and a young vineyard with either soil tillage or permanent green cover in between the grapevines. The pore water stable isotopes were used to calibrate a soil physical model, which was then used to infer the age of the soil water at different depths. This way, we could relate elevated nitrate concentrations below an old vineyard to tillage processes that took place during the winter two years before the sampling. We further showed that the elevated nitrate concentration in the subsoil of a young vineyard can be related to the soil tillage prior to the planting of the new vineyard. If the soil is kept bare due to tillage, a nitrate concentration of 200 kg NO3--N/ha is found in 290 to 380 cm depth 2.5 years after the installation of the vineyard. The amount of nitrate leaching is considerably reduced due to a seeded green cover between the grapevines that takes up a high share of the mobilized nitrate reducing a potential contamination of the groundwater.