H51K-1534
Assessment of the Efficiency of Sediment Deposition Reduction in the Zengwen River Watershed in Taiwan

Friday, 18 December 2015
Poster Hall (Moscone South)
Menghsuan Wu1, Hsi-Nien Tan1, Wei-Cheng Lo2 and Chang-Tai Tsai1, (1)National Cheng Kung University, Department of Hydraulic and Ocean Engineering, Tainan, Taiwan, (2)National Cheng Kung University, Tainan, Taiwan
Abstract:
The river upstream of watersheds in Taiwan is very steep, where soil and rock are often unstable so that the river watershed typically has the attribute of high sand yield and turbid runoff due to the excessive erosion in the heavy rainfall seasons. If flood water overflows the river bank, it would lead to a disaster in low-altitude plains. When flood retards or recesses, fine sediment would deposit.

Over recent decades, many landslides arise in the Zengwen river watershed due to climate changes, earthquakes, and typhoons. The rocks and sands triggered by these landslides would move to the river channel through surface runoff, which may induce sediment disasters and also render an impact on the stability and sediment transport of the river channel.

The risk of the sediment disaster could be reduced by implementing dredging works. However, because of the nature of the channel, the dredged river sections may have sediment depositions back; thus, causing an impact on flood safety. Therefore, it is necessary to evaluate the effectiveness of dredged works from the perspectives of hydraulic, sediment transport, and flood protection to achieve the objective of both disaster prevention and river bed stability.

We applied the physiographic soil erosion-deposition (PSED) model to simulate the sediment yield, the runoff, and sediment transport rate of the Zengwen river watershed corresponding to one-day rainstorms of the return periods of 25, 50, and 100 year. The potential of sediment deposition and erosion in the river sections of the Zengwen river could be simulated by utilizing the alluvial river-movable bed two dimensional (ARMB-2D) model. The results reveal that the tendency for the potential of river sediment deposition and erosion obtained from these two models is agreeable. Furthermore, in order to evaluate the efficiency of sediment deposition reduction, two quantized values, the rate of sediment deposition reduction and the ratio of sediment deposition reduction were utilized.

According to the simulation results obtained from the PESD and ARMB-2D models, the river sections with severe sediment depositions and high efficiency of sediment deposition reduction will be referred to as the dredging-to-be areas.