S21E-03
An Evolutionary S-wave Model of the Earth Upper Mantle and Transition Zone

Tuesday, 15 December 2015: 08:30
307 (Moscone South)
Eric Debayle, Fabien Dubuffet and Stephanie Durand, LGLTPE : Laboratoire de Géologie de Lyon : Terre, Planètes et Environnement, Université Lyon 1, ENS Lyon and CNRS, Lyon, France
Abstract:
We present 3D2015_03Sv, an evolutionary S-wave model of the upper mantle. At the time of submitting this abstract, the model is based on the waveform modeling of most Rayleigh waves recorded between 1976 and March 2015, and includes 1,330,210 fundamental and higher mode Rayleigh waveforms analyzed at periods between 40 and 400 s. The use of approximate forward theory and modeling allows updating the model with new data on a regular basis, a few days after the publication of the monthly centroid moment tensor (CMT) catalog issued at the Lamont-Doherty Earth Observatory of Columbia University. 3D2015_03Sv contains azimuthal anisotropy and achieves a lateral resolution of ~600 km in the upper mantle. Comparison with other seismic models shows that in the uppermost 200 km, the use of massive datasets with large redundancies allows to average errors, so that it is possible to build models that are consistent up to degree 60. In the transition zone, the number of data decreases and the effect of modeling choices is important. The most recent seismic models agree up to degree 15, which represents an improvement compared to the previous generation of models.