B31A-0521
Land cover change in the zone of sporadic permafrost causes shift in landscape-scale turbulent energy fluxes

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Manuel Helbig, University de Montreal, Montreal, QC, Canada, Karoline Wischnewski, University of Montreal, Montreal, QC, Canada, Natascha Kljun, Swansea University, Geography, Swansea, United Kingdom, Laura Chasmer, University of Lethbridge, Lethbridge, AB, Canada, William L Quinton, Wilfrid Laurier University, Waterloo, ON, Canada, Matteo Detto, Smithsonian Tropical Research Institute, LaVerne, CA, United States and Oliver Sonnentag, Université de Montréal, Département de géographie, Montréal, QC, Canada
Abstract:
Boreal forests in the sporadic permafrost zone have been shown to decline at the expense of wetlands following permafrost disappearance. These land cover changes cause shifts in ecosystem properties and affect biosphere-atmosphere interactions. The goal of our study is to examine the effects of permafrost disappearance on landscape-scale sensible (H) and latent heat fluxes (LE) and related potential feedbacks on regional air temperatures (Ta)

We use a combination of nested eddy covariance flux towers, flux footprint and planetary boundary layer (PBL) dynamic modelling, and MOderate-resolution Imaging Spectroradiometer (MODIS) remote sensing products to resolve spatio-temporal dynamics in H and LE at the landscape scale at Scotty Creek, NWT (61º18’ N; 121º18’ W) and in radiometric land surface temperatures (LST) at the regional scale across the southern Taiga Plains in the sporadic permafrost zone of northwestern Canada. The heterogeneous landscape comprises boreal forests with permafrost and permafrost-free wetlands.

Our results show that H above the heterogeneous landscape was about twice as high as above a nearby treeless, permafrost-free bog. In contrast, landscape-scale LE was only about 50 % of LE over the bog. These differences were primarily driven by higher heat transfer efficiency of the aerodynamically rougher forest and lower albedo of the forest compared to the bog (about 10 % lower during summer and about 40 % lower during late winter). Aerodynamic LST increased with the fraction of forest in the flux footprints. This effect was strongest (r2 = 0.55, slope = 0.06 K per % forest) at the end of winter when contrasts in albedo are largest. Bulk surface conductance increased with the fraction of wetlands in the footprints. On a regional scale, radiometric MODIS LST increased with tree cover during the snow cover period (0.06 K per % tree cover), but decreased during the summer (-0.04 K per % tree cover). Modelling results showed that a shift from the current heterogeneous to a homogeneous bog landscape could lead to a decrease in the maximum PBL height by about 700 m and to a decrease in regional Ta by 1 to 2 K. Our results show clearly that permafrost degradation and forest cover shifts will affect local and regional surface energy balances in the boreal zone and could represent important modifiers of future climates.