MR33C-2680
Laboratory Evidence of Strength Recovery of Healed Faults

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Koji Masuda, Geological Survey of Japan, Tsukuba, Japan
Abstract:
Fault zones consist of a fault core and a surrounding damage zone. Fault zones are typically characterized by the presence of many healed surfaces, the strength of which is unknown. If a healed fault recovers its strength such that its cohesion is equal to or greater than that of the host rock, repeated cycles of fracture and healing may be one mechanism producing wide fault zones. I present laboratory evidence supporting the strength recovery of healed fault surface, obtained by AE monitoring, strain measurements and X-ray CT techniques. The loading experiment was performed with a specimen collected from an exhumed fault zone. Healed surfaces of the rock sample were interpreted to be parallel to slip surfaces. The specimen was a cylinder with 50 mm diameter and 100 mm long. The long axis of the specimen was inclined with respect to the orientation of the healed surfaces. The compression test used a constant loading rate under 50 MPa of confining pressure. Macroscopic failure occurred when the applied differential stress reached 439 MPa. The macro-fracture surface created during the experiment was very close to the preexisting plane. The AE hypocenters closely match the locations of the preexisting healed surface and the new fault plane. The experiment also revealed details of the initial stage of fault development. The new fault zone developed near, but not precisely on the preexisting healed fault plane. An area of heterogeneous structure where stress appears to have concentrated, was where the AEs began, and it was also where the fracture started. This means that the healed surface was not a weak surface and that healing strengthened the fault such that its cohesion was equal to or greater than that of the intact host rock. These results suggest that repeated cycles of fracture and healing may be the main mechanism creating wide fault zones with multiple fault cores and damage zones.