SM51E-2598
Simulating the Thinning Magnetotail Current Sheet During a Substorm Growth Phase with the Rice Convection Model-Equilibrium

Friday, 18 December 2015
Poster Hall (Moscone South)
Colby L Lemon1, Chris E Crabtree2, Margaret Chen1 and Timothy B Guild3, (1)Aerospace Corporation Los Angeles, Los Angeles, CA, United States, (2)US Naval Research Laboratory, Washington, DC, United States, (3)The Aerospace Corporation, Chantilly, VA, United States
Abstract:
Modeling the progression of the magnetotail configuration during a substorm growth phase is challenging because the current sheet becomes very thin, and is difficult to resolve while keeping the problem computationally tractable. Magnetohydrodynamics (MHD) models have dealt with this problem in various ways, and many claim to be driven by physical rather than numerical considerations. The Rice Convection Model-Equilibrium (RCM-E) is not an MHD model, and has advantages and disadvantages compared to MHD. The notable advantages are the characterization of the full energy distribution of the plasma (including the associated gradient/curvature drift), as well as its generally more comprehensive treatment of the electrodynamics of magnetosphere-ionosphere coupling. The disadvantages include the bounce-averaging of plasma drift, which limits the domain to closed field lines, and the assumption of slow flow relative to the Alfvén speed. The RCM-E has been used in the past to model a substorm growth phase, but its assumptions do not allow it to properly treat the onset mechanism or the formation of x-lines. It can simulate the approach to onset, but is limited by its ability to resolve the thinning current sheet. In this presentation, we present advances in the technique used to calculate the self-consistent magnetic field, which allows us to resolve thinner current sheets than were previously possible. We combine this with a generalized ballooning mode analysis of specific flux tubes in order to assess the stability of the magnetotail to substorm onset.