S23C-2746
Efficient 3D Acoustic Numerical modeling in the Logarithmic-grid using the Expanding Domain Method
Efficient 3D Acoustic Numerical modeling in the Logarithmic-grid using the Expanding Domain Method
Tuesday, 15 December 2015
Poster Hall (Moscone South)
Abstract:
In the numerical modeling of seismic wave propagation by the use of a discrete computing domain, dispersion analysis is preceded by the determination of the spatial grid spacings in order to ensure accurate modeling results. Grid spacing is a function of wavelength, and the wavelength depends on the minimum velocity and maximum source frequency. Therefore, as the frequency increases, the number of grids increase and this leads to computational overburden. In order to reduce the computing complexity, coordinate transformation techniques such as Riemannian coordinates and logarithmic grid sets are proposed. Riemannian wave-field extrapolation is a way to reformulate the wave-field by expressing it in Riemannian coordinates. In the logarithmic grid, grid spacing changes logarithmically, so this enables us to reduce the number of grids compared to a conventional grid set. Furthermore, this could completely remove boundary reflections by extending the model dimensions. However, numerical modeling in the logarithmic grid is still inefficient because it is performed for whole model at every individual time step.In this study we applied the expanding domain method to the logarithmic modeling in order to improve computational efficiency. This method, based on amplitude comparison, excludes computations for zero wave-fields by considering a non-zero domain boundary. Numerical examples demonstrated that our new modeling method enhances computational efficiency maintaining accuracy compared with conventional modeling methods. In wider and higher-order dimensions, particularly, the efficiency of our modeling method increased. Our new modeling technique could also be applied to the generation of underwater target echo signals requiring high frequency analysis.