H24A-07
Hydrogen Sorption and Transport

Tuesday, 15 December 2015: 17:30
3016 (Moscone West)
Colin Joseph McNeece and Marc A Hesse, University of Texas at Austin, Austin, TX, United States
Abstract:
Hydrogen is unique among aqueous ions, both in its importance for geochemical reactions, and in its complex transport behavior through reactive media. The structure of hydrogen reaction fronts can be analyzed in the advective limit of the transport equation. At local chemical equilibrium, sorption of hydrogen onto the media surface (sorption isotherm) controls reaction front morphology. Transport modeling thus necessitates accurate knowledge of surface chemistry. Though motivated by transport, sorption models are often parameterized against batch titration experiments. The validity of these parameterizations, in a transport setting, are seldom tested. The analytic solution to the transport equation gives an algebraic relationship between concentration velocity and equilibrium sorption behavior. In this study, we conduct a suite of column flow experiments through quartz sand. Hydrogen concentration breakthrough curves at the column outlet are used to infer the “transport sorption isotherm.” These results are compared to the batch titration derived sorption isotherm. We find excellent agreement between the datasets. Our findings suggest that, for aqueous hydrogen, local chemical equilibrium is a valid assumption. With the goal of a predictive transport model, we parameterize various sorption models against this dataset. Models which incorporate electrostatic effects at the surface predict transport well. Nonelectrostatic models such as the Kd, Langmuir, and Freundlich models fail. These results are particularly compelling as nonelectrostatic models are often employed to predict hydrogen transport in many reactive transport code.