T13C-3020
Hinterland-to-foreland structural evolution of the base of the Himalayan metamorphic core, west Nepal

Monday, 14 December 2015
Poster Hall (Moscone South)
Zoe Braden, Queen's University, Kingston, ON, Canada, Laurent Godin, Queen's University, Geological Sciences & Geological Engineering, Kingston, ON, Canada, Chris Yakymchuk, University of Waterloo, Waterloo, ON, Canada, Dawn Kellett, Geological Survey of Canada, Natural Resources Canada, Ottawa, ON, Canada and John M Cottle, University of California Santa Barbara, Santa Barbara, CA, United States
Abstract:
The base of the Himalayan metamorphic core is a folded reverse-sense shear zone exposed extensively along its transport direction. In west Nepal, along-transport exposures show a transition in structural style from hinterland to foreland, and sampled quartzite and pelite show variations in thermobarometry, quartz crystallographic preferred orientation (CPO), monazite Th-Pb ages and 40Ar/39Ar thermochronology.

In the hinterland region, the shear zone yields a deformation temperature gradient from > 700°C at the top of the shear zone down to 400°C at the base. Metamorphic grade also decreases downwards through the shear zone. Muscovite 40Ar/39Ar ages are ca. 6 Ma. In the transition zone separating hinterland and foreland on the north flank of the Karnali klippe, a comparable structural section yields a deformation temperature gradient that similarly decreases down structural level from ~700 to 500°C. Muscovite 40Ar/39Ar dating yield ca. 14-12 Ma cooling ages. In-situ monazite geochronology indicates prograde metamorphism at ca. 43-34 Ma and melt crystallization at ca. 26-18 Ma. In the foreland, deformation is not strictly brittle; CPO analyses on sheared quartzite on the south flank of the Karnali klippe suggest deformation temperatures decreasing from 500 to 400°C downwards through the shear zone. Muscovite from the foreland yields 40Ar/39Ar ages of ca. 17 Ma.

Deformation temperatures decrease marginally from hinterland to foreland and structurally downward within the shear zone, and estimates suggest ductile deformation prevails well into the foreland. Hinterland 40Ar/39Ar muscovite ages in west Nepal are anomalously young, and are possibly related to recent exhumation due to the SE-propagating mid-Miocene Gurla Mandhata-Humla system. Alternatively, they could be linked to the activation of a young duplex in the footwall of the Himalayan metamorphic core due to along-strike variation in geometry of the Main Himalayan thrust ramp.