NH33B-1912
Land use and Hydrological Characteristics of Volcanic Urban Soils for Flood Susceptibility Modeling, Ciudad de Colima (Mexico)

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Myrna LORENA Perez Gonzalez1, Lucia Capra1, Lorenzo Borselli2 and Azalea Ortiz2, (1)UNAM National Autonomous University of Mexico, Mexico City, Mexico, (2)UASLP Autonomous University of San Luis Potosi, Geology, San Luis Potosi, Mexico
Abstract:
The fast population rate growth and the unplanned urban development has created an increase of urban floods in the City of Colima. Land use change has transformed the hydrological behavior of the watersheds that participates on the runoff-infiltration processes that governs the pluvial concentrations. After the urban areas enlargement, 13% from 2010 to 2015, rainfall has caused significant damages to the downtown community. Therefore it is important to define the main hydraulic properties of the soils surrounding the city.

The soil of the region is derived from the debris avalanche deposits of the Volcano of Colima. The volcanic soil cover is only 10 to 15 cm depth. To test the soils of the region, sampling locations were chosen after making a land use map from a Landsat image. The map was done by selecting and dividing similar surface images patterns into three main classifications: Natural (N1), Agricultural (N5) and Urban (N4) surfaces. Thirty-Three soil samples were collected and grouped in nine out of ten land use subdivisions. The 10thsubdivision, represents the completed urbanized area. The land use model is made using spot 4 1A images from the year 2010 up to year 2015. This land use evolutionary analysis will be a base to evaluate the change of the runoff-infiltration rate, direction, and concentration areas for the future flood susceptibility model.

To get the parameters above, several soil analysis were performed. The results were that all the soil samples tested were classified as sandy soils. The water content values were from 7% (N4) to 45% (N1) while bulk density values for the same sample were form 0.65 (N1) to 1.50 (N4) g/cm3. The particle density and the porosity values were from 1.65 g/cm3 /5.5% (N4) - 2.65 g/cm3/ 75.40% (N1). The organic matter content was around 0.1% for urban soils and up to 6% on natural and agricultural soils. Some other test like electric conductivity and pH were performed. The obtained parameters were used to get other soil characteristics using the Pedotransfer Functions. The hydraulic conductivity measured in situ using a Drip-Infiltrometer device provide Ks values of 4.5, 2.4 and 5 cm/h for urban, agricultural and natural soils respectively. The information described is integrated on a GIS data base and it is an input for the Flood Susceptibility Model of Colima's metropolitan area on progress.