T51E-2961
Formation of Continental Fragments: The Tamayo Bank, Gulf of California

Friday, 18 December 2015
Poster Hall (Moscone South)
Rediet Abera1, Jolante van Wijk2 and Gary J Axen2, (1)University of Houston, Houston, TX, United States, (2)New Mexico Institute of Mining and Technology, Socorro, NM, United States
Abstract:
Potential field data are used to construct a two-dimensional crustal model along a profile through the Tamayo Trough and Bank in the Gulf of California. The model is constrained by seismic reflection and refraction data, and field observations. The potential field data do not fit a model where the crust of the Tamayo trough is continental, but they fit well with a model where the Tamayo trough crust is oceanic. This implies that the Tamayo Bank is entirely bounded by oceanic crust and is a microcontinent. The oceanic crust of the Tamayo trough that separates the Tamayo Bank from the mainland of Mexico is thin (~4 km), so oceanic spreading was probably magma-starved before it ceased. This led us to come up with a model that explains the formation of microcontinents that are smaller in size and are not found in the proximity of hotspots. At first, seafloor spreading commences following continental breakup. When the magma supply to the ridge slows down, the plate boundary strengthens. Hence, the ridge may be abandoned while tectonic extension begins elsewhere, or slow spreading may continue while a new ridge starts to develop. The old spreading ridge becomes extinct. An asymmetric ocean basin forms if the ridge jumps within oceanic lithosphere; a microcontinent forms if the ridge jumps into a continental margin. This model for formation of continental fragments is applicable to other regions as well, eliminating the need of mantle plume impingement to facilitate rifting of a young continental margin and microcontinent formation.