A21F-0207
Evaluation of Global Hydrological Model considering Reservoir Operation

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Yoshimitsu Masaki, Naota Hanasaki, Kiyoshi Takahashi and Yasuaki Hijioka, NIES National Institute for Environmental Studies, Tsukuba, Japan
Abstract:
Construction of reservoirs, especially in the last half of the 20th century, has greatly contributed to the prevention of riverine disasters and the security of water supplies in the world. Since reservoirs markedly alter the river flow in downstream, precise modeling of reservoir operation is necessary for the improvement of river flow simulations. Yet global hydrological simulations considering reservoir operation are still immature - although actual reservoirs are practically operated by considering both meteorological conditions and regional requests within each river basin, modeled reservoirs are operated according to simplified operation schemes optimized for global applicability with less regional variety. Thus, checking the performance of global hydrological models based on the comparison of model outputs with historical observation records is important for better understanding of uncertainties in the hydrological simulation.

In this study, we conducted long-term historical hydrological simulations considering 6862 reservoirs worldwide. Simulation settings were based on the protocol of the model intercomparison project, termed ISI-MIP2.1A. We compared time-series of observed and simulated reservoir storage to examine the performance of reservoir operation schemes adopted in the H08 global hydrological model for 29 reservoirs, most of which are located in the United States and Canada, selected by considering data availability on the reservoir operation. We ran the hydrological model under four different meteorological forcing data sets distributed for ISI-MIP2.1A simulations for a historical period. By examining whether the observed water storage lies within the spread of simulated water storage with the four sets of meteorological forcing, we identified a prevailing source of errors in the simulation of the river discharge - reservoir operation schemes or meteorological forcing data.