GC22E-05
Development of a Cryosphere Land Surface Model with Coupled Snow and Frozen Soil Processes

Tuesday, 15 December 2015: 11:40
3003 (Moscone West)
Lei Wang, Litao Sun, Kun Yang and Lide Tian, ITP Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
Abstract:
In this study, a land surface model with coupled snow and frozen soil physics has been developed by improving the formulations of snow and frozen soil for a hydrologically-improved land surface model (HydroSiB2). First, an energy-balance based 3-layer snow model has been incorporated into the HydroSiB2 (hereafter HydroSiB2-S) for an improved description of internal processes of snow pack. Second, a universal and simplified soil model has been coupled with HydroSiB2-S to enable the calculation of soil water freezing and thawing (hereafter HydroSiB2-SF). In order to avoid the instability caused by the uncertainty in estimating water phase changes, enthalpy is adopted as a prognostic variable instead of snow/soil temperature in the energy balance equation of the snow/frozen soil module. The newly developed models were then rigorously evaluated at two typical sites over Tibetan Plateau (one snowy and the other non-snowy, with both underlying frozen soil). At the snowy site in northeast TP (DY in the upper Hei River), HydroSiB2-SF demonstrated significant improvements over HydroSiB2-F (that is the model same as HydroSiB2-SF but using the original single-layer snow module of HydroSiB2), showing the importance of snow internal processes described by 3-layer snow parameterization. At the non-snowy site in southwest TP (Ngari, extremely dry), HydroSiB2-SF gave reasonable simulations of soil water phase changes while HydroSiB2-S did not, indicating the crucial role of frozen soil module in depicting the soil thermal and water dynamics. Finally, HydroSiB2-SF was proved capable of simulating upward moisture fluxes towards freezing front from the unfrozen soil layers below in winter.