T43F-05
Using Paleomagnetic, Geochemical and Structural Data to Recognize Post-metamorphic Tectonic Events in the Caledonide Terranes of Western Svalbard.

Thursday, 17 December 2015: 14:40
306 (Moscone South)
Krzysztof Michalski, Institute of Geophysics Polish Academy of Sciences, Warsaw, Poland
Abstract:
A total of 170 oriented palaeomagnetic samples of Proterozoic-Lower Palaeozoic metacarbonates and metabasites from 28 sites in Hornsund and Oscar II Land, Western Spitsbergen (Fig. 1A) were investigated at the Polish Academy of Sciences Institute of Geophysics . Petrographic and rock-magnetic analyses revealed that the ferromagnetic carriers are dominated by metamorphic pyrrhotite and Low-Ti magnetite. Simultaneous in situ laser ablation 40Ar/39Ar age determination of the samples indicate that a 426-380 Ma Caledonian sensu lato thermal overprint was followed by younger events in the 377-326 Ma and ca. 300 Ma intervals (Fig. 1B). The latter two ages appear to coincide with recently published seismic data indicating that Late Devonian - Carboniferous rifting was followed by similar crustal extension in the SW Barents shelf area in Late Carboniferous time. Published in situ palaeomagnetic directions from Hornsund area in SW Svalbard fit the Silurian sector of the Baltica reference path suggesting that the geometry of the sampled Caledonian Sofekammen Syncline was not modified during following Svalbardian or Eurekan deformation events (Fig. 1C). In contrast, palaeomagnetic directions obtained from Oscar II Land are distant from Caledonian sector of Baltica reference path (Fig. 1C). It is suggested here, that the most significant mechanism responsible for the rotation of the palaeomagnetic directions and modification of geometry of Caledonian tectonic structures of Oscar II Land was listric normal faulting related to the opening of the North Atlantic -Arctic Ocean Basins. Late Cretaceous- Early Tertiary Eurekan folding and thrust faulting appear to have had minor influence on the palaeomagnetic directions obtained.

This study is part of the Polish National Science Centre – DEC 2011/03/D/ST10/05193 PALMAG 2012-2016 funded project .

Fig. 1. A. Geological sketch map of Western Spitsbergen. B. Probability diagrams derived from insitu 40Ar/39Ar laser ablation age determinations for Oscar II/Haakon VII Land. C. The most stable palaeomagnetic components from Hornsund (squares) and Oscar II Land (ovals) against the reference path for the Batica paleomagnetic directions recalculated for the area of Western Spitsbergen; equal area; open/ full symbols -upper/lower hemisphere.