T53A-04
Implications of topographic relief on the brittle-to-plastic boundary beneath the southern Central Range, Taiwan

Friday, 18 December 2015: 14:25
304 (Moscone South)
C. J. Cavallotti, Indiana University of Pennsylvania Main Campus, Indiana, PA, United States and Jonathan C Lewis, Indiana University of Pennsylvania Main Campus, Geoscience, Indiana, PA, United States
Abstract:
The result of the ongoing arc-continent collision between the Eurasian (EU) and Philippine Sea (PSP) plates, Taiwan is an important tool in understanding the real time mechanics of the mountain building process. We show an apparent gap in seismicity beneath Taiwan’s Southern Central Range that may represent the presence of a volume of rock lacking the shear strength required to record brittle processes. A spatially accurate 3D map was created, utilizing data recorded for over 8000 seismic events beneath Taiwan and the surrounding area, and shows an elongate aseismic volume trending northeast southwest generally parallel to the topographic grain of the island. Published P-wave data shows an area nearly coincident with the aseismic zone with lower velocities at depths of 7.5km in the west to nearly 40km in the east which suggests a difference in density (and rheology) from the surrounding, seismically active, areas. Strain inversions assuming a micropolar model for crustal deformation suggest systematic changes in strain tensor geometry from east to west across the hypothesized density boundary. Preliminary results indicate that seismogenic strain along the western margin of the aseismic zone accommodates crustal thinning with stretching oblique to the orogen. In contrast, on the east side of the aseismic zone we see crustal thickening with minimum stretching (shortening) subparallel to PSP-EU motion. The profound change in strain geometry suggests that the asiesmic zone is a partially ductile volume of rock caused by interactions of the EU and PSP beneath Taiwan. We hypothesize that if the rheology contrast is sufficient, higher spatial resolution inversions may reveal that events near the seismic/aseismic interface exhibit Andersonian-like behavior wherein one principal strain axis would lie orthogonal at any given point to a surface mapped to this boundary. Alternatively, if the contrast is smaller the inverted strain geometries may vary systematically and provide constraints on the magnitude of the contrast.