EP32B-04
From surface to subsurface and back again: the contribution of subsurface particle motion to surface armoring
Wednesday, 16 December 2015: 11:05
2003 (Moscone West)
Behrooz Ferdowsi, University of Pennsylvania, Philadelphia, PA, United States and Douglas J Jerolmack, Univ of PA-Earth &Envir Scienc, Philadelphia, PA, United States
Abstract:
Armoring is the development of a coarse surface layer of sediments on a river bed, which overlies a smaller and typically more heterogeneous substrate. All existing models for this phenomenon are predicated on the idea that armoring develops due to size-selective transport and kinetic sieving at the surface of the granular bed. Here examine the development of armoring in the absence of size-selective surface transport, and demonstrate that subsurface particle movement can create an armored surface layer. We first conduct experiments in a laminar and annular flume, over a range of Shields stresses, with bimodal and refractive index-matched spherical sediments; this allows us to image the internal motion of the granular bed that is sheared from above by a viscous oil. Fluid-driven particle motion of the surface layer results in granular shear, that drives motion deep into the bed. This subsurface motion causes an upward migration of coarser particles, at a rate that is proportional to the granular shear rate. Comparison of experimental results to an existing continuum-granular flow model suggest that armoring in our bed-load exeriments is entirely consistent with shear-induced segregation in dry avalanches - but is slower. There is no size-selective transport at the surface in the experiments, as the annular flume is mass conserving and all particles move as bed load; this was confirmed by observation. To probe the granular physics of armor development further, we perform numerical simulations using a discrete element model (DEM) of granular flow, with and without damping. Simulations reproduce salient features of the experiments, and indicate that armoring is robust but that the rate of segregation is related to the degree of viscous damping. We posit that subsurface granular flow is an important and perhaps dominant contributor to surface armoring in rivers. More generally, this work shows how information is transferred from the surface to the subsurface and back again, through the structure and motion of the sedimentary bed; and it suggests that the granular physics of sediment transport cannot be neglected.