S43F-07
Deep Long-period Seismicity Beneath the Executive Committee Range, Marie Byrd Land, Antarctica, Studied Using Subspace Detection

Thursday, 17 December 2015: 15:10
307 (Moscone South)
Richard C Aster1, Nicole D McMahon1, Emma K Myers2,3 and Amanda C Lough4, (1)Colorado State University, Geosciences Department, Fort Collins, CO, United States, (2)Western Washington University, Geology Department, Bellingham, WA, United States, (3)University of Washington Seattle Campus, Earth and Space Sciences, Seattle, WA, United States, (4)Carnegie Institution for Science, Washington, DC, United States
Abstract:
Lough et al. (2014) first detected deep sub-icecap magmatic events beneath the Executive Committee Range volcanoes of Marie Byrd Land. Here, we extend the identification and analysis of these events in space and time utilizing subspace detection. Subspace detectors provide a highly effective methodology for studying events within seismic swarms that have similar moment tensor and Green’s function characteristics and are particularly effective for identifying low signal-to-noise events. Marie Byrd Land (MBL) is an extremely remote continental region that is nearly completely covered by the West Antarctic Ice Sheet (WAIS). The southern extent of Marie Byrd Land lies within the West Antarctic Rift System (WARS), which includes the volcanic Executive Committee Range (ECR). The ECR shows north-to-south progression of volcanism across the WARS during the Holocene. In 2013, the POLENET/ANET seismic data identified two swarms of seismic activity in 2010 and 2011. These events have been interpreted as deep, long-period (DLP) earthquakes based on depth (25-40 km) and low frequency content. The DLP events in MBL lie beneath an inferred sub-WAIS volcanic edifice imaged with ice penetrating radar and have been interpreted as a present location of magmatic intrusion. The magmatic swarm activity in MBL provides a promising target for advanced subspace detection and temporal, spatial, and event size analysis of an extensive deep long period earthquake swarm using a remote seismographic network. We utilized a catalog of 1,370 traditionally identified DLP events to construct subspace detectors for the six nearest stations and analyzed two years of data spanning 2010-2011. Association of these detections into events resulted in an approximate ten-fold increase in number of locatable earthquakes. In addition to the two previously identified swarms during early 2010 and early 2011, we find sustained activity throughout the two years of study that includes several previously unidentified periods of heightened activity. Correlation with large global earthquakes suggests that the DLP activity is not sensitive to remote teleseismic triggering.